Progressive Decomposition of Point Clouds Without Local Planes
نویسندگان
چکیده
We present a reordering-based procedure for the multiresolution decomposition of a point cloud in this paper. The points are first reordered recursively based on an optimal pairing. Each level of reordering induces a division of the points into approximation and detail values. A balanced quantization at each level results in further compression. The original point cloud can be reconstructed without loss from the decomposition. Our scheme does not require local reference planes for encoding or decoding and is progressive. The points also lie on the original manifold at all levels of decomposition. The scheme can be used to generate different discrete LODs of the point set with fewer points in each at low BPP numbers. We also present a scheme for the progressive representation of the point set by adding the detail values selectively. This results in the progressive approximation of the original shape with dense points even at low BPP numbers. The shape gets refined as more details are added and can reproduce the original point set. This scheme uses a wavelet decomposition of the detail coefficients of the multiresolution decomposition. Progressiveness is achieved by including different levels of the DWT decomposition at all multiresolution representation levels. We show that this scheme can generate much better approximations at equivalent BPP numbers for the point set.
منابع مشابه
A novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملIdentifying Planes in Point Clouds for Efficient Hybrid Rendering
We present a hybrid rendering technique for highfeature colored point clouds that achieves both, high performance and high quality. Planar subsets in the point cloud are identified to drastically reduce the number of vertices, thus saving transformation bandwidth at the cost of the much higher fill-rate. Moreover, when rendering the planes, the filtering is comparable to elaborate point-renderi...
متن کاملAutomatic Registration of Terrestrial Laser Scanner Point Clouds Using Natural Planar Surfaces
Terrestrial laser scanners have become a standard piece of surveying equipment, used in diverse fields like geomatics, manufacturing and medicine. However, the processing of today’s large point clouds is time-consuming, cumbersome and not automated enough. A basic step of post-processing is the registration of scans from different viewpoints. At present this is still done using artificial targe...
متن کاملLearning Anchor Planes for Classification
Local Coordinate Coding (LCC) [18] is a method for modeling functions of data lying on non-linear manifolds. It provides a set of anchor points which form a local coordinate system, such that each data point on the manifold can be approximated by a linear combination of its anchor points, and the linear weights become the local coordinate coding. In this paper we propose encoding data using ort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006